Generic Manufacturing Controllers

Bryan A. Catron
Bruce H. Thomas

Factory Automation Systems Division
Center for Manufacturing Engineering
National Institute of Standards and Technology
Gaithersburg, MD 20899

Presented By:

Bryan A. Catron

IEEE Conference on Intelligent Control
Arlington, Virginia

August 24-26, 1988

Bibliographic Reference:
Catron, B. A., Thomas, B. H., "Generic Manufacturing

Controllers", Proceedings of the IEEE Conference on Intelligent
Control, Arlington, Virginia, August 1988.

Generic Manufacturing Controllers

Bryan A. Catron
Bruce H. Thomas
Factory Automation Systems Division
National Institute of Standards and Technology
Gaithersburg, MD 20899

Introduction

The cost of developing software for the factory is continuing to increase due in part to the
problems of integrating equipment and controllers from multiple vendors. A consistent
philosophy is needed for designing reusable code for integrating manufacturing control
systems. Development of a "generic controller” will minimize the problem of redundant
software. [4] Ny

For a better understanding of this particular approach to a generic controller, an overview
of the Automated Manufacturing Research Facility (AMRF) facility, a definition of a generic
controller, and a description of results from development and implementation of a version of
the generic controller are presented.

AMRF Overview

A major goal of the AMRF project has been the establishment of a test bed small-batch
manufacturing system at the National Institute of Standards and Technology (NIST)
Gaithersburg, Maryland site. The test bed, which became operational in 1983, is designed to
be used by government, industry, and academic researchers for the development, testing, and
evaluation of potential interface standards for manufacturing systems. To ensure that as
many critical system integration issues as possible could be addressed, component modules
were chosen from many different vendors. Therefore, the NIST test bed differs from virtually
all other flexible manufacturing systems in the variety of "off-the-shelf" components that
have been integrated into a single coordinated operation.

The industrial machinery of the AMRF occupies a 5000 square-foot area of the NIST
machine shop. The factory systems that are located on the floor of the AMREF include: two
machining centers, a turning center, a coordinate measuring machine, six robot manipulators,
a vision system, two wire-guided vehicles, storage and retrieval systems, tray roller tables,
tool setting stations, vacuuming and other cleaning equipment, part fixturing and robot
gripper systems. Integration test runs of the AMRF have demonstrated the successful
automated production of small batches of machined parts. This paper outlines one particular
implementation of a controller composed of generic parts, and is being developed to support
the Cell, Vertical Workstation, Inspection Workstation, and the Material handling
Workstation of the AMRF.

Generic Controller

The key to defining our generic controller is the decomposition of controller activities into
sub-activities called managers. A well-defined manager will encapsulate a sub-activity and
provide a clean interface. This decomposition is analogous to information hiding techniques
used to decompose a program into subroutines [6). Decomposition of tasks provides for
localized decision making and allows for incremental enhancements without affecting other
code (provided the interface is preserved).

A controller built using generic controller principles will have two major components, a
generic component and an application component. AMRF researchers believe that a major
segment of the functionality of a manufacturing controller is identical to any other controller
on any level of a factory. This identical part of the controller software is termed the generic
component. The remaining part of the software is functionally specific to that controller and
is termed the application component.

AMREF research efforts have focused on the identification of generic control principles
which could serve as a basis for the development of future interface standards for factory
control systems. By using generic functional requirements for control systems, AMRF
researchers believe that redundant software development efforts can be minimized. For
example, the Cell, Vertical Workstation, Inspection Workstation, and Material Handling
Workstation controllers within the AMRF must support the following set of basic functions:

1) the processing of control messages expressed in the AMRF command/status
message format,

2) the exchange of data with the AMREF through the Integrated Manufacturing Data
Administration System (IMDAS)),

3) the retrieval, interpretation and execution of process plans that have been prepared in
a standard AMREF process plan format,

4) the transition of initialization and shutdown states according to a protocol developed
for the AMRF by the University of Virginia,

5) the transmission of messages through AMRF common memory areas and
communications networks, and

6) the input and display of controller data through a human interface system.

Goals

The architecture of the generic controller under development at the AMRF revolves
around four fundamental goals: 1) functionally decompose activities into generic modules, 2)
allow (but do not require) multiprocessing and distributed processing, 3) build libraries of
generic utility routines, and 4) use configuration data files for initial setups. A further
description of these goals and the rationale behind them is given below.

Decomposition of activities should reduce interdependence between managers allowing
each manager to operate individually for testing and simulation. With a strictly defined
interface, each manager can be developed and implemented independently. Managers with
well defined functionality facilitate reuse of source code. These reusable managers form the
core of the generic controller.

Secondly, the generic controller must be able to operate in a distributed multiprocessing
environment. With the advent of inexpensive computers and networks, a single processor
environment is no longer a constraint. Multiprocessing is not required, however, and all
modules may operate as a single process depending on implementation. Conceptually
though, the managers are independent processes capable of concurrent execution across a
network. To accommodate the distributed multiprocessing environment, communication
between managers must be handled in a manner which hides implementation concerns:
Separate processes communicating transparently over a network will function identically to
multiple processes on a single computer.

The third goal of a generic controller is the reduction of duplicate software. To address
this issue, libraries of routines will be developed whenever two or more managers share a
common need. The communication routines are the best example because every manager
must communicate with other managers. Other candidates for function libraries are message
parsers, protocol translators, string manipulation, and debugging routines.

The final goal is to develop data configurable managers. The managers should be self-
contained’ entities with a limited outside view of the world. Configuration with the outside
world and with other functions will be data driven to reduce the amount of custom code
required.

The intent of the architecture is to allow greater flexibility and reusability by providing a
set of managers from which an application designer may select. A controller is built by
selecting the required functionality and combining those managers with application-specific
code. The internal algorithms of managers are independent of other managers and
modifications to one manager will not affect others.

Development and Implementation

Development of the described generic controller began at the AMRF in late 1987 as a
research effort to design a controller for manufacturing data preparation [9]. The
Manufacturing Engineering Control System (MECS) provided the test vehicle for the generic
controller. Other AMRF manufacturing control applications were analyzed during the design
phase including a cell controller, vertical workstation controller, inspection workstation
controller, and a material handling controller. The initial decomposition of activities into
managers was based on previous controller architectures [3] and extensions were made to
improve flexibility and reusability. The generic controller was designed to support the
current AMRF functionality. = However, every effort has been made to expand the
applicability of the architecture outside the AMREF.

An initial set of managers was identified which represent some major generic functions of
a factory controller. Additional generic functions will be identified as development and
implementation continue. Figure 1 shows the key managers which have been identified. The
defined managers provide functionality to control and synchronize tasks, schedule tasks,
facilitate a user interface, communicate with other controllers, and interface with a database.

In addition, each manager provides a set of variables which can be monitored by outside
processes. Data files are used to configure each manager with the rest of the controller.

The Transition Manager provides initialization, start-up, and reconfiguration protocols
between controllers. A state-transition model is used to provide deadlock-free
synchronization between controllers through various stages of readiness [1] [5]. Managers
within a controller use the Transition Manager as a central synchronization point to facilitate
internal synchronization during start-up and shutdown sequences. Since all controllers
require a Transition Manager, generic code has been developed to accommodate these needs.

The User Interface Manager is responsible for all manual input to the controller. In
addition, most screen output will be processed by the User Interface Manager to provide a
uniform look and feel to the controller. The proposed User Interface Manager is built with a
user interface editing tool on top of X windows [7][8]. The combination of an editing tool and
a portable windowing environment provide greater flexibility and portability.

Managers communicate with one another through an internal AMRF standard set of

communication utility routines providing access to the communications scheme. The Inter-
" Process Communications Manager (IPC) is responsible for the implementation of the
communication primitives. The IPC is based on a common memory scheme of communication
which has been used in the AMRF. The exact communication paradigm implemented should
be transparent to a calling routine. This stresses flexibility and reusability by providing a
uniform interface to communications. In addition to the IPC process, there is a library of
routines which define the external interface to the IPC manager. A communication
configuration data file is used by all managers to initialize the communications.

The Database Interface Manager provides access to application data files. These may
reside either in a local database or in a remote database. The actual location of the files and
the exchange protocol of the database system are transparent to other managers. The

Application
Manager
i]
A

Manager
[n]

A
y Y y Y

v

Transition
Manager

Figure 1

Database Interface Manager provides a shell around the AMRF Integrated Manufacturing
Data Administration System (IMDAS) distributed database [2].

In a hierarchical control system, a controller has a single supervisory controller and one
or many subordinate controllers. The Supervisor Interface Manager handles protocol
conversion from the supervisory controller to the internal managers. Supervisory commands
may originate from a remote supervisory controller or a local operator. The local operator is
always given priority over the remote supervisor to allow local intervention or error
recovery. Commands are translated and sent to the appropriate manager for further
processing.

A Subordinate Interface Manager handles interfacing with a subordinate controller or
device. Each subordinate or device has a unique Subordinate Interface Manager to handle
communication and protocol translations. At the lowest level in the control hierarchy, the
subordinates are actually equipment and the Subordinate Interface Manager is an
application-specific device driver. Subordinate Interface Managers at higher levels
communicate with the Supervisor Interface Manager of lower level controllers. However, the
internals of the Subordinate Interface Manager are hidden to other managers behind a
uniform interface. Subordinate managers are also responsible for error recovery of the
subordinate controller. Emulation of the subordinate allows system integration testing prior
to installing the hardware.

The Scheduler Manager performs the scheduling of jobs at a local level. Scheduling
arranges the current jobs in priority order before they are executed. A generic interface to
scheduling processes allows the controller to choose between available schedulers.

The Application Manager encapsulates all non-generic portions of code and provides
overall sequencing and job control for a specific application. This manager utilizes and
coordinates the other managers to perform work. The Application Manager is intended to
encapsulate all of the non-generic source code and may be divided into multiple processes.
The current generic controller is still under development and has four managers designed and
implemented: 1) Transition Manager, 2) Supervisor Interface Manager, 3) Database
Manager, and 4) Inter-Process Communication Manager. The Database Manager is
implemented in LISP while the others are implemented in the C programming language.
Different programming languages were intentionally used to further illustrate the reusability
of the managers and their generic interfaces.

Future Work

The Application Manager will be implemented in LISP and will provide the fundamental
control for the MECS controller. Additional generic managers may be extracted from the
Application Manager as the generic controller is more fully developed, further reducing the
amount of application specific code required. Although application specific code will continue
to be developed, the generic controller can significantly reduce the expense of developing
new factory controllers.

The implementation of this generic controller is intended for the AMRF environment.
Howeyver, the basic ideas are not specific to the AMRF and could be implemented elsewhere.

References

[1] Catron, B.A. "Implementing a Transition Manager in the AMRF Cell Controller,"
Proc. of 3rd International Conf. on CAD/CAM Robotics and Factories of the
Future, Southfield, Michigan, Aug. 1988

2] Furlani, C. et al. "The Integrated Manufacturing Data Administration System
(IMDAS)," to be published as an NIST Internal Report, 1988
[3] McLean, C.R. "A Cell Control Architecture For Flexible Manufacturing," Proc. of

the 1987 Advanced Manufacturing Systems Conf. , Chicago Illinois, June 1987

[4] Naylor, A.W. and Volz, R.A., "Design of Integrated Manufacturing System
Control Software", IEEE Transactions on Systems, Man, and Cybernetics, Vol. 17,
No. 6, pp.881-897, 1987

[5] O’Halloran, D.R., and Reynolds, P.F., "A Model for AMRF Initialization, Restart,
Reconfiguration, and Shutdown," NBS/GCR 88-546, May 23, 1986

[6] "~ Parnas, D.L. "On the Criteria To Be Used in Decomposing Systems into
Modules," Communications of the ACM, vol 15, pp 1053-1058, Dec. 1972
[7] Scezur, M., Stephens, M., Perkins, D., and Moe, K. "TAE Plus: Evolution of a

NASA User Interface Management System", Presented at 26th Annual Technical
Symposium of the DC Chapter of the ACM, 1987

[8] Scheifler,R.W. and Gettys, J., "The X Window System", ACM Transactions on
Graphics, Vol. 5, No. 2, April 1986

[9] Thomas, B.H. and McLean,‘C.R., "Using Grafcet to Design Generic Controllers”,
1988 International Conference on Computer Integrated Manufacturing,
Rensselaer Polytechnic Institute, Troy, NY, May 1988

The NIST Automated Manufacturing Research Facility is partially supported by the Navy
Manufacturing Technology Program.

Certain commercial equipment, instruments, or materials are identified in this paper in
order to adequately specify the experimental procedure. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and Technology, nor
does it imply that the materials or equipment identified are necessarily the best available for
the purpose.

This is to certify that the article written above was prepared by United States
Government employees as part of their official duties and is, therefore, a work of the U. S.
Government and not subject to copyright.

